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We respond to some statements made in the Comment [Phys. Rev. 51, 2674 (1995)], and argue that
exact enumeration results for short chains are not conclusive and that the claimed accuracy of the simu-
lation results is not supported by the data, due to the relatively small samples.
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In their Comment the authors Grassberger and Hegger
(GH) [1] apply a relatively new simulation technique to a
numerically controversial problem —the critical behavior
(at the special point) of a self-avoiding walk on a square
lattice anchored to an adsorbing linear ‘“‘surface.” They
simulate much longer chains than those treated in our
study [2] and find agreement with theory; they claim that
the deviation of our results from the theoretical predic-
tions is due to finite size effects.

Before discussing their method and results we would
like to respond to several statements made in the Com-
ment. The authors state (second paragraph) that the
theoretical predictions “were confirmed by both exact
enumerations and by transfer matrix studies,” which
have found the critical temperature g, within the range
0.713-0.715, and add (last paragraph and Abstract) that
the strong corrections to scaling “were correctly taken
into account in the exact enumeration and transfer ma-
trix studies.” Indeed, the transfer matrix calculations
[3~5] (which, however, use the theoretical values v=2%)
are equal to the theoretical values ¢=0.5 and
v=1.453 ... within relatively small error bars. Howev-
er, their estimates of g, lie within the range 0.711-0.717,
where the latter upper bound is close to our [2] lower
bound, 0.718. On the other hand, the exact enumeration
results are less conclusive and depend on the analysis
technique used. For example, the central values for
¢ (¢=0.55%0.1 and 0.55+0.15) obtained in the earlier
work of Kremer [6] are close to our estimate, but the
large errors cover also the theoretical result. The same is
true for most of the results obtained by Zhao, Lookman,
and De’Bell [7], who have applied the partial differential
approximation to several models. For the present model
they have found ¢.=0.72%+0.05, ¢=0.50+0.09, and
1= 1.45%0.05, while for a model (on the square lattice)
based on site (rather than bond) attraction they have ob-
tained ¢=0.521+0.03 and y =1.40+£0.05, and for the tri-
angular lattice, ¢$=0.50%£0.01 and y,=1.4£0.1. It
should be pointed out that these results could not be ob-
tained independently and they are based on the best
known result for u and the theoretical value of y, (for de-
tails see [7]). Moreover recently [8] results with
significantly smaller errors, ¢,=0.715+0.001 and
71=1.460%0.004 (but no result for ¢) have been obtained
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with another analysis method; it is not clear, however,
whether 7, has been obtained independently.

We also would like to respond to the GH comparison
of the CPU times required by their calculations and ours.
First, it should be stressed that in general such a compar-
ison is not easy due to unknown factors, such as the
efficiency of the code and the number and type of quanti-
ties calculated. Our simulations would require ~ 900
CPU/h on a HP730 work station (used by GH), they pro-
vide results for 20 temperatures (rather than five in the
Comment), and the samples are significantly larger than
those generated by GH (50—100 million vs 1.5 million).
Another statement that should be corrected is “that with
the scanning method thermal averages are dominated by
only few configurations....” Thus, a special discussion
is devoted in our paper [2] to the accepted chains, which
are the different chains in the sample that contribute
significantly to the averages, and results presented in
Table I, reveal that even for a chain length N =250 their
number is ~7 million. Finally, it should be added that
the explanation of the GH method and more important-
ly, the discussion about its efficiency are too sketchy in
the Comment as well as in their other works ([9,10] and
Ref. [7] of the Comment). Fortunately, Garel and Orland
[11] proposed earlier the ensemble (or chain) growth
method (EGM), which is very similar in nature to the
GH method, and applied it to several systems, Ising mod-
els, polyelectrolytes, and peptides [12—14]. These papers
provide a detailed account of the whole approach, includ-
ing a thorough discussion about efficiency.

The GH method is an extension of the enrichment [15]
and the Redner and Reynolds (RR) [16] techniques and is
also related to the Berretti-Sokal (BS) procedure [17];
these methods, in principle, enable one to generate rela-
tively long self-avoiding walks (SAW’s). Thus, even in
the early 1960s and 1980s SAW’s of up to 2000 and 1000
steps have been generated by the enrichment [18] and the
RR [16] methods, respectively. The problem, of course,
is to determine the extent of correlations among the
chains. An efficient application of the enrichment
method requires working under the conditions in which
the enrichment exactly offsets the attrition. However, for
long chains it is difficult to balance these two opposing
effects and typically large fluctuations between produc-
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tion of short chains and population explosion of highly
correlated long chains occur. This is probably the reason
why in later applications of this method SAW’s of only
several hundred steps have been generated [19-22].
Similar difficulty is also expected with the BS and RR
methods. The efficiency of these three methods for
SAW’s in the bulk has been estimated under certain as-
sumptions by Sokal [23]. He finds that the CPU time re-
quired to generate a statistically independent chain is
~N?, where 2<p <1+ (for the RR and BS methods
(N) replaces N). This efficiency is better than that of the
scanning method. However, as far as we know, only BS
have verified this estimate by calculating from the simula-
tion the autocorrelation functions of various quantities.
For SAW’s with finite attractive or repulsive interactions
and in the presence of geometrical constraints (such as an
impenetrable surface) it becomes difficult to assess the
effect of the temperature and the constraints on the
efficiency (see discussion below). GH (Ref. [7] of Ref. [1])
estimate the effect of temperature on the efficiency but
they do not provide detailed computational data to sup-
port their theoretical predictions (see also the Appendix
of Ref. [12]).

One of the difficulties in simulating SAW’s with attrac-
tions is that configurational space consists typically of re-
gions that are small (and therefore hard to be reached by
the simulation) while contributing significantly to the
partition function; an extreme example is protein folding.
Since the GH (and EGM) construction procedure is
determined by short-range interactions (i.e., looking only
one step ahead), highly probable chains that are based on
long-range attractions (i.e., large loops) will be generated
with very low probability and practically will be missed.
In this respect the scanning method is advantageous,
since at each step all the future continuations of the chain
up to some cutoff length are scanned and thus at least im-
portant medium-range loops are taken into account. In
fact, in an initial application of the scanning method to
an off lattice model of polyglycine [24] only three steps
ahead were scanned and the most stable structure found
was the a helix. In a later study five future steps were
considered and a structure was generated with much
lower energy than that of the a helix [25]. Therefore, for
such models the best one can do is to verify that the re-
sults become stable for increasing sample sizes. Indeed,
for the present model [2] we have found that for chains of
N ~200 a sample size of n,. ., ~ 13 million accepted
chains is necessary in order to gain stability. (Notice that
the sample size that correctly represents an accepted
sample is smaller than n,..,; the two sample sizes ap-
proach each other as the acceptance rate increases.)

In this respect the work described in the Comment is
very unsatisfactory and its significance is questionable:
The samples used are extremely small (between 6000 and
15000 independent chains for N =2000). In particular,
the samples of chains with two ends on the surface,
which lead to Z'' and to the exponent y,;, are even
smaller. We have found (Table I of [2]) that already for
N =250 they constitute only ~0.9% of the total number
of chains and therefore 0.34% for N =2000 (due to the
N1 gecrease in the ratio of these populations). GH
state that their statistical errors are inversely proportion-
al to the square root of the sample sizes; however this
behavior should be verified for much larger samples in or-
der to claim stability.

GH agree that our results for N <200 are reliable due
to the very high statistics; therefore if their calculations
are reliable they should lead to our results in the range
50=<N =200 (our results were derived at 40 <N =<200).
However, a careful examination of Fig. 1 in the Comment
reveals that already in this range the best straight line is
obtained for ¢ =0.714, as compared to 0.722 found by us,
and the corresponding value of ¢ is ~0.53 with an error
~=%0.03 (due to the lack of simulations for
0.710<¢q <0.714). This means that satisfactory agree-
ment with the theoretical predictions is obtained from the
GH simulations already for N <200 without the need to
study chains of up to N=2000. This conclusion applies
also to the other two figures, where both y; and y,—y
can be obtained from N =<200. (Notice that for estimat-
ing the y’s, GH use the best value for u known from ex-
act enumeration studies, while we estimate yu, y,, and y;
from our data.)

In summary, the sample size of GH is relatively small
and their claimed accuracy is not supported by the data,
as discussed above. Obviously, in order to reduce correc-
tion to scaling effects, it is very important to develop
methods that would enable one to investigate longer
chains than those studied by us. It seems that the GH
method has the potential to become such a tool (at least
for certain models), however a thorough study of its
efficiency should be carried out.
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